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SUMMARY 

The random vortex method of Chorin' provides a numerical simulation of high-Reynolds number flow in 
two dimensions. The method can be used to  model the viscous interaction of wind with a surface-mounted 
obstacle of arbitrary cross-section. In this paper the method has been used to investigate the flow of wind 
over common building shapes; an inlet profile is chosen to represent the stationary aspects of the atmospheric 
boundary layer. The evolution of flow over a short time-interval after flow initialization is depicted, and 
a mean value of pressure coefficient, C,, is calculated over the building perimeter. Some comparison is 
made with published wind-tunnel measurements for the case of a surface-mounted square-section block 
and for a building model with 10" roof pitch. 

KEY WORDS Random Vortex Method Wind Engineering 

1. INTRODUCTION 

Any mathematical expression which describes the complete physical problem of a slightly viscous 
fluid flowing over a bluff obstacle leads to considerable complexity. The governing Navier-Stokes 
equation is, of course, non-linear and it is precisely the non-linear character of the general 
solutions to this equation which is of importance in the study of aerodynamics for bluff bodies. 
Moreover, the difficulties of effecting numerical solutions to the equation are well-known. In 
the particular case of wind flowing around buildings, these inherent mathematical and numerical 
difficulties are further complicated by the nature of environmental boundary conditions. 

As a result of these complexities, little attempt has been made to bring solutions of the 
Navier-Stokes equation to bear on the problem of wind-induced structural loading. Our physical 
understanding derives in large part from controlled scale-model experiments in wind-tunnels, 
together with full-scale pressure measurements on buildings. Theoretical discussion has been 
confined usually to first-order linearizations and to dimensional analysis. 

Vortex shedding from a bluff obstacle such as a building (and the consequent formation of a 
wake) is a complicated phenomenon which is still the subject of experimental investigation, e.g. 
see References 2-4. Over recent years considerable progress has been made towards finding 
numerical solutions to the Navier-Stokes equation and it may be asked whether these can 
contribute to an understanding of the physical processes. Concerning the specific problem of 
the wind-loading of structures, there are a number of questions which experiment has not yet 
fully resolved. 

1.1. Scaling assumptions 

The use of reduced-scale models of buildings in an unpressurized wind-tunnel can imply a 
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reduction in Reynolds number of as much as three orders of magnitude from the corresponding 
full-scale case. 

For buildings with sharp edges, the statement is often made that vortex shedding from sharp 
corners (coinciding with the location of fixed separation points) is largely independent of Reynolds 
number. The Strouhal number in such cases is observed to show little dependence on Reynolds 
number (e.g. see Figure 2 in Reference 5). Such observations offer some reassurance that the 
spanwise vortex shedding from the leeward vertical walls of a rectangular building (if it is 
sufficiently tall) can be confidently modelled in a wind-tunnel. However, flow separating from 
a curved surface exhibits dependence on Reynolds number and in recent years this knowledge 
has inhibited the use of wind-tunnels for the study of wind-loading requirements for buildings 
with curved surfaces. 

The streamwise shedding of vorticity from the top of a two-dimensional surface-mounted 
obstacle exhibits a much broader frequency spectrum than that associated with spanwise shedding 
and a vortex street.6 It is not clear whether a flow such as this-with periodicity which is much 
less sharply-defined -will be independent of Reynolds number. The results reported in 
Reference 7 suggest that there is some dependence on Reynolds number for flow over prismatic 
hill-models. The question is worth pursuing since, from the point of view of understanding the 
dynamical aspects of wind-loading on pitched roofs, this streamwise mode is of particular 
interest. 

1.2. Turbulence 

Perhaps the most significant complicating factor affecting the study of wind-loading is the 
unsteady and turbulent nature of the wind-flow to which buildings are subjected. Recent research 
has been devoted to determining a mathematical description for the turbulence of strong winds.8 
The efficacy of the wind-tunnel as a design and research tool relies to some extent upon an 
adequate simulation of natural wind turbulence, appropriately scaled. (The scaling of turbulence 
has also been investigated, for example in Reference 9.) 

In general, a distribution of turbulence intensity determined for an established wind-profile 
in open country cannot describe the wind exposure of urban buildings. Indeed, how confidently 
any universal power-law boundary-layer profile (with an associated turbulence intensity) can be 
used to study wind-loading in a densely built environment is a matter for some conjecture. Even 
in cases of isolated buildings in open country, the discrepancy between full-scale field measure- 
ments and predictions derived from wind-tunnel measurements has, on occasion, been attributed 
to the difficulties of representing natural wind turbulence in a wind-tunnel.’’ 

1.3. Estimating mean ,flow 

The mean flow parameters deduced from wind measurements depend upon the time-interval 
over which such averages are calculated. A significant part of the wind-loading of buildings can 
be associated with the transient components of the wind. Gusts can have periods ranging from 
ten seconds down to tenths of a second, and these latter, almost ‘impulsive’, fluctuations may 
give rise to local suction pressures many times greater than the pressure averages computed 
over longer time intervals.’ High frequency fluctuations occur even when the incident wind is 
steady (in this case, the vorticity is generated by the viscous interaction of the wind with the 
building itself). To understand the wind-induced local stresses to which surface cladding is 
subjected, it is necessary to understand the mechanism of this viscous interaction, and to appreciate 
how mean pressure estimates arc affected by their time-interval of averaging. 
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Particular difficulties arise when such high frequency phenomena are studied in a wind-tunnel: 
typically the scaling of time for impulsive phenomena would require model measurements of 
pressure to be made at time intervals of less than 0.001 s. 

2. THE RANDOM VORTEX METHOD 

We suggest that the interaction of a building with its wind-flow field can be studied by directly 
solving the Navier-Stokes equation. For numerical solutions to have a bearing on the wind- 
loading problems which we have discussed, the solution procedure should ideally have the 
following characteristics: (i) it should be as free as possible from ‘artificial viscosity’ error-the 
errors implicit to the numerical approximation should be independent of Reynolds number; (ii) 
it should be able to solve for the case of a building interacting with a flow-field with a prescribed 
vorticity content, and hence be able to simulate the dynamical flow interaction of one building 
with another and with upstream turbulence; and (iii) it should be capable of solving for impulsive 
phenomena and of rendering the evolution of flow over short intervals of time. The random vortex 
method of C h ~ r i n ’ , ” * ’ ~  should be able to satisfy these requirements. 

The flow dynamics of a slightly viscous fluid can be given a numerical description by the 
discretizing of its vorticity field into a distribution of localized vortices of small finite core size 
(called vortex ‘elements’ or ‘blobs’). As far as the inviscid aspect of their motion is concerned, 
these vortices convect in the local velocity field of the fluid. Momentum diffusion is simulated by 
imparting to each vortex element a random-walk displacement and such a simulation can be 
accurate when taken in statistically significant aggregate. 

We consider the flow of wind over a two-dimensional surface-mounted obstacle d, with 
perimeter ad, resting on the surface y = 0 in the (x, y)-plane. The problem is depicted in Figure 1. 

There will be a viscous interaction between the obstacle and the inlet wind. We consider three 
flow regimes: far from the obstacle the flow is unperturbed and is represented mathematically by a 

Figure l(a). An obstacle in a sheared incident stream and (b) a microcosm of its boundary (- are sheet ‘segments’, 0 
are vortex ‘elements’) 
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sheared free-stream profile; at a d  itself a boundary-layer, G7, is formed in which the Prandtl 
boundary-layer approximation is assumed to be valid; beyond the envelope (a@) of this boundary 
layer and in the downstream wake, the flow is complicated by the velocity field induced by vorticity 
which has been created by the interaction of the wind with the obstacle-this region is denoted 
as g. 

2.1. The field in %j induced by vorticity 

The curl of the Navicr-Stokes equation can be expressed in dimensionless form, 
The incompressible dynamics of flow in region %? is expressed through a scalar vorticity field, 5. 

a ( j d t  i- u . V < =  Re-'V2(, (1) 

with 4 = curl u, and 5 = <k for flow confined to y > 0 in the (x, y)-plane. The flow field u satisfies 
the continuity condition, so the flow field induced by vorticity ( may be represented by a stream 
function $ through 

V2$ = - 5, (2) 
with u = (a$/ay, - at,h/ax). The solution to (2) at a field point ro is expressed in terms of its Green's 
function, 

$(ro) = - <(r)G(ro /r)  dr, (3) s 
where r = xi + yj, etc. The vorticity distribution <(r) is discretized by considering a collection of 
point vortices located at positions {rj}, by 

where Tj is the circulation of the j th vortex element and 6 is the Dirac delta-function. In fact, 
the Green's function appropriate to (3) is singular as ro --f r, so a modification is introduced to 
suppress this singularity. Rather than a point vortex, a vortex of small but finite core size, a, is 
introduced (this being the source of a spatial truncation error in the simulation). The modified 
Green's function appropriate to a surface-mounted obstacle may be determined from image 
theory as 

( 5 )  
( 2 ~ ) ~ 1 { l o g ~ r ~ - r / - l o g / r o - r * ~ } ,  l r o - r / > a  
( h a ) -  '{ Ir, - r /  - /ro - r* I >, /ro - r /  < a W o l r )  = { 

(r* is the reflection of r across the ground plane y = 0). Thus when the field is computed at  a 
position greater than a distance cr from a vortex element, the interaction is assumed to be the 
usual singular one between point vortices; when the field is computed within a radius a of the 
vortex element we resort to a non-singular form for G(rolr). Substituting ( 5 )  and (4) into (3) 
provides a discretized expression for $(ro) and hence an expression for the velocity field (ut, vy) 
induced by ((r) at ri can be determined as a numerical algorithm which consists of summations 
over the finite collection of discrete vortex elements. Cheer (Reference 14, p. 1 l), for example, 
provides a statement of this algorithm. 

2.2. Imposing the impermeability condition 

Two sources of vorticity are envisaged in the present problem: that entering the flow from 
upstream (see Section 2.5) and that generated by viscous interaction with the obstacle (see 
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Section 2.4). Once entered into inviscid flow, vorticity is transported in the local velocity field, 
with this transport described by the time-dependent Euler equation, 

aqat  t u.vt = 0. (6) 
Numerically the convective displacement dxi in time dt of the ith vortex element we take to be 
the Euler step dxi=uidt.  During each time-interval of this evolution the condition of 
impermeability must be satisfied on ad. 

If uf represents the free-stream flow in the absence of the obstacle, and ut represents the field 
induced at time t by the vorticity which has been generated at the obstacle in the previous 
time-steps, then we can construct an auxiliary velocity field u4 which is irrotational and which 
effects the condition 

(uf + uc + u&n = 0, on ad, (7) 

in the time interval (t, t + dt). Since the vorticity distribution is evolving in time, condition (7) 
must be re-established successively at each time interval. At any given time-step u4 is irrotational, 
i.e. it is Laplacian. When the boundary layer is introduced, condition (7) will be imposed on aB 
rather than on a d .  

The procedure for constructing the field u4 (for an arbitrarily shaped two-dimensional obstacle) 
is described by Chorin' or Hanson et a l l 5  This field can be represented by a scalar potential, 4, 
such that 

u4 = v 4 ,  (8) 

which can be given a Green's function representation 

40.0) = y(r)G(r, I r) dr i (9) 

Image theory is again invoked and this line-integration is taken over the extended perimeter of the 
obstacle together with its mirror image in y < 0, as@ + dd'. To determine the unknown 'source- 
sink' distribution y(r), boundary condition (7) is applied, i.e. (9) is substituted into (8) and then (8) is 
substituted into (7). This leads to the integral equation 

y(ro)-- n 'f y(r)--{loglr0-r/)dr :n = -2(uc+u,)-n, (10) 

which is represented discretely as a system of linear equations. The values of y evaluated at  discrete 
points along the obstacle boundary are determined as the solution to 

AT= b, (11) 
where b is the scalar array 2 (ur + uJ-n evaluated at the discrete body points on ad. The matrix A is 
a function only of the geometry of the obstacle: since it is functionally independent of the flow 
dynamics it requires to be inverted once only at the outset of computation. The elements of matrix 
A are given explicitly in Section 4 of Reference 1. 

In the model describing the evolution of flow in terms of the convection of vortex elements, 
the effect of viscosity has not yet been taken into account. That is to say, the convective Euler's 
equation which results if the right-hand side of equation (1) is suppressed has been modelled. If 
instead, the convection term in this equation is suppressed-i.e. the term u.V<-there results 
a diffusion equation, the solution of which (in the absence of boundaries) is an isotropic Gaussian 
distribution with zero mean and with standard deviation (2  dt/Re)'12. We follow Chorin',12 by 
exploiting the stochastic implications of such a process: after each time increment, dt, to each 
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discrete vortex element a random Gaussian displacement, q = (yx, y,), is imparted which has zero 
mean and variance 2 dt/Re. Taken in sufficiently large ensemble and over a period of time, addition 
of this discrete representation of diffusion to the field ug + u4 + uf should simulate the entire flow of 
(1) in %‘. The vector displacement dx = (dxi, dy,) over a time interval dt of a discrete vortex element 
ti can be expressed as 

dx, = {ug(ri) + uf(ri) + u&ri)} dt + q. (12) 

2.3. Vorticity dynamics in B 

The no-slip condition has not yet been imposed on the solution. It can be imagined that, as 
wind moves over the obstacle, a shear layer will form parallel to its surface. This will consist of 
vortex sheets (which are to be discretized into ‘segments’) of sufficient intensity and distribution 
that they effect a no-slip condition at the boundary. The vortex sheets generated in this way 
will form a boundary-layer. We consider such a layer of thickness D parallel to the surface of 
an arbitrarily-shaped two-dimensional obstacle. In this layer it is assumed that equation (1) can 
be approximated by the Prandtl boundary-layer equation 

aKlat + u,.vK = va2ulayf2 (13) 

= - au,/ay’ (14) 

with vorticity, ~(x’, y’) in the boundary-layer, now given by 

(v is the kinematic viscosity of air; u, = (u,, v,) is the velocity field in a). A local co-ordinate system 
(x’, y’) has been introduced such that x’ is orientated parallel to d d  and y’ is orientated as an 
outward normal to it. A microcosm of this boundary is considered with local origin fixed at ad’ 
where u,(x‘, y’ = 0) = 0. At d B  the velocity u, must match that of the flow in V which has been 
previously discussed, i.e. 

UJX’, y’ = D )  = u, 
with U,(x’) = u&r) + uf(r) + u&r), where the global position in V indicated by r is understood to 
coincide with the local position relative to the boundary-layer B implied by (x’, y’ = D). The 
potential field ud, is now to be calculated to ensure that there is no flow in the y‘-direction across 
each point of 8 3 .  The continuity condition in the boundary-layer, 

au, av, -+-=o, 
dx’ dy’ 

is integrated so that 

and equation (14) can be integrated in the form 

u,(x’, y’) = U D  - K(x’, A) dA. sg 
Chorin (Reference 12, p. 430) provides a discrete expression for (16) by considering the shear layer 
formed along ad to be discretized into vortex segments of intensities (xj} and lengths ( h j )  
orientated parallel to the boundary at body points (xi}. Collectively these will induce a motion on 
the ith segment denoted by u, = (u,, v,). If the vorticity in the boundary layer is determined by a 
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summation over discrete sheet segments, then the velocity field u, can be deduced from (15) and 
(16); hence the motion of a vortex segment in a time interval dt can be approximated by 

where 11‘ represents a simulation of diffusion, i.e. it is a Gaussian random displacement with 
standard deviation (2vdt)’I2. It is to be noted from equation (13) that boundary-layer diffusion 
proceeds only in the $-direction. 

2.4. Imposing the no-slip condition: vortex creation 

If, after a time-step dt, the redistributed vorticity in &? gives rise to a non-zero tangential velocity 
at ad-i.e. if u,(x’, 0) = uo # 0 when the { rc j>  are substituted into (17)-then no-slip can be re- 
imposed by creating a vortex sheet with intensity (per unit length of the boundary) uo. In itself, this 
would constitute a crude vorticity-creation algorithm. 

Diffusion at a solid boundary is not an isotropic Gaussian process, so an algorithm assuming 
isotropy can be poorly convergent. A more appropriate vorticity-creation algorithm has been 
introduced by Chorin.I2 In order to construct a Gaussian diffusion which is isotropic at y’ = 0 
and which nevertheless allows all the required boundary conditions to be satisfied there, the 
flow field is formally ‘extended’ across the boundary such that u,(x’, - y‘) = - u,(x’, y’) and 
u&’, 0) = 0. Such a field must imply that ~(x’, - y’) = IC(X’, y’) for y’ # 0. Thus, if after time interval 
dt there exists a non-zero tangential velocity uo at (x’,O), a vortex sheet of intensity 2u0 is 
created there which is divided into 21 segments { rc j>  and during the subsequent time-step these 
are made to diffuse isotropically into the extended boundary - D < y‘ < + D. The random 
displacement of the segments is made to proceed in alternate directions, so that half diffuse into 
g, and half into the image layer, &?‘ (these latter disappearing from the computation). Thus the 
introduction of the 1 segments into ,98 impose with their collective intensity uo the no-slip condition 
at a d .  Further references related to the development of this algorithm are to be found in Reference 
12. 

The symmetry condition ti(x’, y’) = rc(x‘, - y’) implies that if a vortex segment moves into the 
image layer g‘, then it can be reflected back across y’ = 0 into the boundary layer proper. By 
symmetry such a reflection procedure will, on average, simulate the diffusion across y’ = 0 of 
vortex segments from the image layer 92’ into g. If a sheet xi moves into the region %?, i.e. into 
y‘ > + D, then it becomes a discrete vortex element ti such that ti = hitii. CheerI4 has shown 
that if a core size ci for this element is chosen so that ci = hi/n then the interaction of the sheet 
segment tii approximates that of the element ti in the limit y’-+D. Alternatively if an element 
ti enters the boundary layer from V, it becomes a vortex sheet rci. 

In view of the discrete vortex dynamics associated with such a model of the boundary layer, 
its thickness D should be a reasonable number of standard deviations in magnitude. In the 
examples to be presented in this paper, D is chosen to be five standard deviations in width. 

2.5. Upstream conditions 

It is our interest to study the interaction of a surface-mounted obstacle with an approach 
flow which models the atmospheric boundary layer. We approximate this by prescribing a 
logarithmic boundary layer profile at the inlet. 

In principle a more complete simulation of this ambient flow can be attempted by ‘growing’ 
the boundary layer profile upstream through imposing the no-slip condition there. This would 
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simulate dynamically the vorticity in the approach flow. In order to generate a profile of prescribed 
structure, the numerical equivalent of roughness would need to be introduced upstream. Ideally 
such a model should also be made to represent the turbulence structure of wind. The task of 
constructing such an elaborate model of the atmospheric boundary layer is not pursued in the 
present paper, although it is within the scope of the random vortex method (see, for example, 
Reference 16). 

The effect of upstream vorticity on the flow over an obstacle is of some considerable interest. 
Fraenkel’ demonstrated analytically that in the case of vorticity incident on a surface-mounted 
obstacle, there develops a recirculation corner-flow to windward of the obstacle. Fraenkel 
considered the case of inviscid flow over an obstacle upon which free-slip conditions were im- 
posed, in contrast to the present simulation in which Navier-Stokes flow is considered, with no- 
slip imposed at the obstacle. 

The simplified numerical model presented here does not lend itself to investigating the effect 
of upstream vorticity on the flow. By representing the approach flow as a velocity profile, the 
incident vorticity does not participate itself in the evolving flow dynamics. After the first time-step 
the vorticity of the incident stream is assumed to be much less intense than that generated by 
no-slip at the obstacle; we consider that there is a considerable difference in scale between the 
atmospheric boundary-layer (some 400 m) and the thin boundary layer created by no-slip at 
the surface of the obstacle (some 2cm). To adequately study the effect of varying the vorticity 
content of the approach flow, a more dynamically complete simulation of the atmospheric 
boundary layer would be required. 

3. ACCURACY O F  THE METHOD 

The interaction of a slightly viscous fluid with a large bluff body is a numerically awkward 
problem when it is formulated as a difference analogue to the Navier-Stokes equation. If difference 
approximations of consistent order are made to the advection term in this equation (i.e. to u.Vu) 
and to the viscous term (i.e. to Re-’V2u), the truncation error of the former can ‘swamp’ the 
entire viscous term, a hazard which obviously increases with increasing Reynolds number. The 
difference errors to the advection term have the structure of second-order spatial derivativesl8 
and they can be considered to introduce a purely numerical diffusion into the difference method. 
The random vortex method is a useful alternative to difference methods because it circumvents 
this specific numerical ‘swamping’ effect. However, other kinds of numerical error are generated 
by the method. 

3.1. Unbounded flow 

Detailed error analysis has been applied to the vortex method for the case of flow in the 
absence of boundaries. The discretization of continuum vorticity into elements of finite core size, 6, 
generates a spatial truncation error; for inviscid flow, analyses of various vortex methods have 
determined this error to be of Le onard also shows (for uniform core size) that this error 
is not diffusive to O(02); Marsden and Weinstein21 demonstrate more generally that a collection of 
discrete vortices of fixed finite core size is a Hamiltonian system which therefore admits no 
dissipation. 

Vortices of finite size should deform as they are convected. If this deformation is suppressed 
(as it obviously is in the present simulation) an error is introduced which is subsumed in the 
O(a2) error of the vortex method.19 Leonard” points out that the method is a Lagrangian 
treatment so no explicit treatment of the advective derivatives in (1) is required, and fairly large 
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time-steps can lead to stable solutions. It should be noted that Hald’s19 analysis includes a 
higher-order time-integration scheme of the Lagrangian co-ordinates, whereas in the present 
simulation the Euler solution is used. Temporal truncation should not contribute an error with 
diffusive structure. 

The error associated with a Gaussian ensemble representation of diffusion in a static fluid is 
of order v1I2. Beale and Majda22 demonstrate that the vortex representation of Eulerian flow 
approximates viscous flow to O(02 + v) and they offer this as a lower bound to the composite 
error for inviscid flow plus a random-walk diffusion. Chorin12 has estimated this composite 
error heuristically to be of O(02 + v1I2): in view of the result of Beale and Majda this may be a rather 
liberal estimate. The numerical errors specifically associated with the simulation of diffusion tend 
to zero as v -+ 0, or as Re -+ co. 

Milinazzo and SaffmanZ3 have criticized Chorin’s random vortex method. They model the 
growth in angular momentum of a continuum vortex by allowing a collection of discrete vortices 
to undergo a random walk. The variance of the angular momentum is bounded as v,  t -+ 0, 
however since 11 and t appear in the denominator of their relative error, this error and its variance 
are infinite in these limits. Milinazzo and Saffman demonstrate that the variance in their relative 
error can only be contained if the number of elements in the ensemble increases in proportion 
to the Reynolds number. There is an obvious difficulty in proposing a ‘relative error’ (which 
has any significance) for a function which vanishes at one or more points on its domain of 
definition. Furthermore it seems likely that ensemble averaging (i.e. splitting a computation with a 
large number of vortices into several computations with fewer vortices) would reduce the expense 
of this particular computation. 

C h ~ r i n ~ ~  suggests that a natural expression for the relative error associated with this stochastic 
simulation would be the difference between the exact expression of angular momentum at time 
t and its stochastic simulation, divided by the exact expression. Such a relative error is bounded, 
with zero mean, and with variance which is also bounded, tending to zero as v -+ 0 and as t -+ 00. 

The manner of expressing the relative error in such a problem is to some extent arbitrary. The 
whole question of determining criteria for the comparison of continuum processes with their 
stochastic simulations requires further investigation. At the moment there does not seem to be 
an established consensus. 

3.2. Flow in the presence qf boundaries 

The error analysis associated with viscous boundary conditions is much less complete than that 
for unbounded flow. The convergence of Chorin’s treatment of the boundary layer is discussed in a 
general context in Reference 25. His specific model of no-slip and of vortex creation provides 
convincing simulations of Blasius flow l 2  and good agreement with experimental measurements of 
the drag on cylinders and aer0foi1s.l~ 

The length of each vortex sheet segment is related to the separation distance of the vortices 
along the boundary; this distance is typically some fraction of the perimeter of the body. Obviously 
the distance between sheets in the boundary layer will be much smaller than the core dimensions, 
i.e. the sheets largely overlap. Hald’’ demonstrates for unbounded inviscid flow that the vortex 
method converges for a core size which can be much larger than the core separation. 

Where a boundary separates, Prandtl boundary layer equations are locally no longer a valid 
approximation. It is difficult to assess the effect to the overall flow of using equation (13) at 
separation points. The behaviour of vortex segments in this region will be discussed in more 
detail in the next section. 
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4. FLOW STARTED IMPULSIVELY AT t = 0 

An advantage of the method we have described lies in the fact that it can accommodate an 
inflow velocity field of arbitrary structure. For example, if the velocity profile of the atmospheric 
boundary layer can be prescribed directly by a power-law formula, 

UdY)  = U,(Y,)(Y/Y,)" (18) 

(with appropriate choice of gradient height y, and exponent a) then the viscous forces which 
create this global boundary-layer need not enter explicitly into our model. To treat the case of 
a building immersed in this atmospheric boundary-layer, we may concentrate on the perturbation 
to uf which is generated by the obstacle, i.e. the perturbation field uy + u+ (and in the field U ~ ) .  This 
amounts to: (i) a summation over a finite collection of vortex elements; (ii) a summation over a finite 
collection of vortex sheets and (iii) an integration over a bounded perimeter in equation (10). 
Similar to many Green's function methods (and in contrast with many grid methods) there are no 
boundary conditions to be imposed numerically at infinity. 

We shall illustrate the method for the case of an inlet profile described by (18) with a = 0.16 
(a 'rural' profile) around a pitched-roof building for a flow initialized at t = 0. Strictly speaking, 
we consider the viscosity to be 'turned on' at  t = 0 and hence the viscous effects of the building 
propagate into a steady free-stream flow. The effects of these starting conditions can be compared 
to those of an impulsive start-up, with fluid accelerated from rest instantaneously at t = 0, to 
some steady value. Obviously this is an artificial situation and the random vortex method can 
be extended to treat the physically more realistic case of flow with finite acceleration. In particular, 
it should be possible to prescribe a continuous transient signature in the time domain for the 
incident free-stream in order to represent wind gusts. Long period time averages can be computed 
from the flow which may approach a stationary (or quasi-stationary) state. Since the numerical 
solution becomes increasingly accurate, in theory converging to an exact solution as the time- 
interval of each step tends to zero,26 the method is particularly appropriate for the study of the 
time-varying aspect of flow in detailed resolution over short periods of time, as opposed to 
evaluating a steady state. In any case, there are more efficient numerical techniques which can be 
used to predict a steady flow field around a building (e.g. see Reference 15). 

Equation (1) has been expressed in terms of dimensionless variables u, r and t, which can be 
converted into dimensional variables by multiplying them by factors U ,  L and T, respectively: 
U is a standard scale velocity for the flow, L is scale length and T is given by T= L/U.  In 
architectural applications a natural choice for L is the height (or ridge height) of a building, and 
for U we may choose the free-stream velocity at that height. Typically, L= 10m, U = 5 m/s, and 
hence T= 2 s. In the following illustrations, the interval between time-steps is chosen to be 0.02 
dimensionless units, and the Reynolds number is lo6. 

The application of image theory in (6) and (9) ensures that there is no convective transport 
of vortex elements (or of fluid) across the ground plane y = 0, however a vortex element may 
diffuse across this plane into y < 0, in which case it is removed from the flow calculation. To 
limit the computer storage requirements of the calculation, vortex elements are also removed 
after they have been transported sufficiently far downstream that they no longer influence the 
flow near the building; in the following examples we take this distance to be fifteen building 
lengths downstream. 

In Figure 2 the random vortex method is illustrated for various buildings with common 
eaves-height (0.5 dimensionless units) and width (1 unit), but with various angles of roof pitch 
(OO,  23.5", 30" and 40"). The extended obstacle is represented by 40 body-points. In each case 
the building is exposed to an incident wind described by equation (18) with a = 0.16, and with 
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a wind-speed scaled arbitrarily so that uf at twice the eaves height is taken to be 2.5. For an 
eaves height of 10m and a wind speed of 10m/s at gradient height of 20m, this would imply a 
time-scale of T= 5 s. 

Figure 2(a) illustrates the flow over a block-shaped building. The first frame represents the 
streak-lines formed by massless particles entered into the flow from a regularly-spaced array of 
points, at the 18th time-step; the paths of the particles are then followed over four successive 
time-steps. Since each time-step corresponds to 0-02 dimensionless units of time, at step 21 there 
have elapsed 0.42 dimensionless units of time since the impulsive start-up. At the 21st time-step 
there are 253 discrete vortex elements and segments entered into the flow. The second frame of 
Figure 2(a) represents the flow between time-steps 36 and 39 (with 352 elements in the flow); the 
third frame represents flow between time-steps 54 and 57 (378 elements); the fourth frame 
represents steps 72 to 75 (446 elements). The entire sequence represents 1.5 dimensionless units 
of time, or 7.5 s if T= 5 s. 

Various aspects of the flow development in its initial stages can be visualized in Figure 2(a): 
at the windward caves there develops a sharp separation with some suggestion of reattachment 
onto the horizontal surface of the roof. (Castr0~9~ discusses some experimental evidence to 
suggest such reattachment.) At the leeward eaves a recirculation eddy forms which detaches and 
then begins to convect downstream. 

Figure 2(b) illustrates the initial flow development over the same intervals of time, but for the 
case of building with roof pitch 23.5". At the 75th time-step there are 607 vortex elements 
entered in the flow. Figure 2(c) illustrates the development of flow for a roof-pitch of 30" (at 
the 75th time-step there are 556 vortex elements in the flow). Figure 2(d) illustrates the initial 
flow development for roof-pitch of 40" (at time-step 75 there are 571 elements in the flow). 

A comparison of Figures 2(a)-2(d) indicates the effect of roof geometry on the pattern of initial 
flow development. The separation at the windward eaves moves to the ridge as pitch is increased, 
and reattachment can occur on the leeward roof. In the initial stages, a recirculation eddy appears 
to form along the leeward roof, before it detaches itself and convects downstream. This latter 
feature resembles flow visualizations from some well-known water-channel experiments (see plate 
9 in Reference 27). 

The streakline diagram (Figure 3(a)) illustrates the sequence of flow development (for 40" roof 
pitch) after a total of 220 time-steps have elapsed. This represents a dimensionless time interval 
of 4.4, or some 22 s if T= 5 s. Figure 3(b) illustrates the locations (and sense) of the corresponding 
805 discrete vortex elements in the flow. It can be seen from Figure 3 that a wake is developing, 
which appears to 'reattach' downstream of the building, although as time progresses further, 
this position varies considerably. Wilson et aL7 have compiled a comparison of published 
experimentally-determined cavity lengths and flow reattachment lengths behind various obstacles 
mounted in a boundary-layer; these lengths vary from 4 building lengths to some 16 building 
lengths downstream, depending on Reynolds number, boundary-layer thickness, and obstacle 
shape. In their own water channel and wind tunnel experiments, they studied the effect of 
Reynolds number on the reattachment length behind a hill-model, characterized by an apex 
angle of some 20". They found that the reattachment length becomes shorter with increasing 
Reynolds number: for a flow Reynolds number varying between 10' and lo4 this length varies 
between 6 and 4 times the hill-height. 

Experiments such as these indicate that a large-scale recirculation bubble can achieve 
considerable stability in the wake. (This is also a prominent feature of steady numerical solutions 
to the Navier-Stokes equation for high Reynolds number.) However, the present simulation does 
not render this stationary flow feature. It may be that a stationary recirculation bubble is to be 
associated with longer time-averages. Alternatively, an inspection of Figures 3 and 4 might suggest 
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that a viscous interaction of the ground with the cluster of vortices after they have detached from 
the roof could be a significant factor in determining the character of the wake. Downstream from 
the obstacle, the no-slip condition has not been imposed at the ground plane, so detached eddies 
are able to slip freely downstream. A more comprehensive model could be constructed by 
introducing body-points along the plane y = 0. In the present simulation the evolution of a 
recirculation bubble is not pursued, and we concentrate on the obstacle itself during the initial 
stages of vortex shedding. 

The shapes of the first two clusters of discrete vortices which have detached in Figure 3(b) are 
anomalous and can be associated with the initial conditions whereas subsequent clusters assume a 
more regular and distinctive shape. A more regular sequence is illustrated in Figure 4 for flow at a 
scaled time of 6 dimensionless units. Despite their increasing regularity of shape, as time progresses 
further, the frequency with which the large lee eddies detach at the body appears to remain 
unsteady. Some frequency-spread in the spectrum is anticipated by wind-tunnel experiment for the 
streamwise shedding from a surface-mounted obstacle: the measured periodicity content of a fully 
developed wake is not sharply-defined (e.g. see Figure 13 in Reference 6), unlike the case of 
spanwise shedding which establishes a vortex street (see Figures 15 and 16 in Reference 3). 

As we have already noted, at the apex of the obstacle where the flow separates, vortex sheet 
segments are subject to large velocities vertical to the building surface. The elements which 
penetrate into the building (beyond y’ < 8.97’) are removed from the calculation. Those which 

1 - 1  - 1  + I  + I  - 1  - 1  + I  

a. b 

- 1  + 1  +I - 1  - 1  +I 1 - 1  

C. d. 

Figure 5. Distribution ofcomputed C, averaged over 75 time-steps, derived from the velocity fields illustrated in Figure 2. 
The dotted envelope represents the standard deviations associated with C, 
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move into W are then subject to Navier-Stokes flow. This behaviour indicates large gradients in the 
velocity field in @ near the apex (possibly associated with the accumulation of vortex 
segments which have convected from @ ‘upstream’ of the apex). These velocity gradients are not 
consistent with the Prandtl equations, and separation represents a point of particular inaccuracy in 
the method. A detailed study of the vorticity dynamics in the vicinity of separation is required to 
assess the errors there. 

It is nevertheless interesting that this behaviour of vortex segments near points of separation is 
reminiscent of the practice used in a number of vortex methods whereby discrete vortices are 
injected into flow at determined points of ~ e p a r a t i o n . ~ ~ - ~ ’  This process appears to arise in Chorin’s 
method as a natural consequence of the no-slip condition. 

5. A NUMERICAL DETERMINATION O F  PRESSURE COEFFICIENT 

If the velocity field u(x, y, t )  has been determined numerically, and in sufficient geometric detail, 
then in principle the pressure field can be calculated from it. Specifically, if the first- and second- 
order partial derivatives of u can be numerically computed then Vp can be determined from the 
Navier-Stokes equation. Once this pressure gradient is known, then by integration the pressure 
itself can be derived anywhere in the flow-so long as this pressure can be independently fixed at 
some single reference point in the flow. For this purpose we shall choose a point (xref, yref) upstream 
to which a stagnation pressure pref can be attached. We note too that it is our purpose to normalize 
(through the calculation of a pressure coefficient) all computed pressures with respect to this value 
pref. From the point of view of the present calculation this may be set arbitrarily to unity, i.e. 

Pref = +Pu,2,f = 1. 
All subsequent pressure calculations must hence be considered to be normalized with respect to 
ZPUref  

To relate the mean pressure at a point on the building to the reference pressure pref, a point yref is 
chosen to be at building height (or at eaves height in the case of a pitched-roof building), such that 
yref = ye, so that the x-component of the Navier-Stokes equation can be used to relate pressure p ,  
on the windward side of the building at (xe, ye) to the upstream stagnation pressure pref. The left- 
hand side of 

1 2 .  

dp 1 a 2 U  a Z u  

= Re { ax” + &T} - { u g  + v;} (19) 

is integrated over the domain from xref to x,. We have here neglected the transient term in the 
Navier--Stokes equation since we are concerned to establish a relative mean pressure on the 
building. The numerical problem can be approached by a finite-difference analogue to (19), 
evaluating the derivatives on its right-hand side by difference formulae accurate to second-order. 
At the building surface we take a one-sided second-order formula. 

Having determined the (normalized) mean pressure p ,  at a point (xe, y e )  on the windward face of 
the building, we can now evaluate the pressure distribution relative to this pressure along the 
building surface. Since the condition of no-slip is satisfied along this surface, the pressure gradients 
assume the simplified expressions: 
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These gradients can be expressed, after simple rotation, in components aligned parallel to, and 
perpendicular to, the building surface. With the numerically determined function dp/ds known 
along the perimeter of the building (with tangential unit vector s defined as before), we can perform 
a numerical integration of this tangential gradient, using for example a trapczoidal rule. The in- 
tegration is performed over a,d in such a way that p is continuous along the surface and p(xe ,  ye )  = 
p e  at the point of reference on the building (this latter condition essentially specifies the overall 
constant of integration). At discontinuities in the geometry of the surface, dp/ds is not properly 
defined, so some precaution must be taken to ensure that median values of (s, n) are chosen at these 
points. Inevitably this contributes an additional error in the estimation of pressure at the building’s 
corners. In this context it should also be noted that the accuracy with which equation (10) can be 
solved numerically is adversely affected by discontinuities in d d ,  since such corners are excessively 
smoothed by the numerical procedure. (The matrix equation is well conditioned, however, and the 
procedure is stable.) The accuracy can be improved by approximating re-entrant corners as 
minutely ‘bevelled‘. 

To express the pressure distribution over the surface of the building in terms of the pressure 
coefficient, C,, the integration is performed in such a way that p(xe, ye )  = p e  - pref. The engineering 
significance of this coefficient is discussed in References 31, 32 and others. 

Figure 5 illustrates the distribution of pressure coefficients over the same building forms shown 
in Figure 2. The pressure is averaged over an interval of 75 time-steps; the standard deviation is 
indicated by the envelope of dotted lines. Negative values of C, indicate suction. The curves of 
Figure 5 show some qualitative similarity with wind-tunnel measurement, but the leeward suction 
indicated by the simulation is less pronounced than most measured values. It will be observed that 
for the 0” pitch case, a slight positive pressure appears at the lee corner, and this tends to broaden 
and move towards the apex as pitch angle is increased. The question of the leeward pressure is 
discussed further in the next section. 

6. COMPARISON WITH WIND-TUNNEL EXPERIMENT 

Some indication of the plausibility of the random vortex simulation can be found in a comparison 
with wind-tunnel measurements. For example, Castro4 provides a detailed description of 
experiments to determine the flow over two-dimensional square section blocks mounted in a thick 
rough wall boundary layer. His experiment is primarily concerned to examine the wake 
downstream of reattachment; his Figure 6 displays various distributions of pressure coefficient 
over the block perimeter. 

Before comparing the present numerical simulation to such wind-tunnel data, some important 
cautionary notes must be sounded. In the present simulation a sheared stationary inlet flow is 
prescribed, whereas the rough wall boundary layer of Castro’s experiment possesses a measured 
turbulence structure. In a wind-tunnel experiment, the mean estimates of pressure at the block 
surface are taken experimentally over extended averaging periods with stationary or quasi- 
stationary conditions for the wake. In the present numerical simulation we confine ourselves to 
rather short time averages (at most over 3 units of scaled time after flow initialization), during 
which a stationary recirculation bubble has not developed. 

The block surface pressures measured by Castro (Reference 4, Fig. 6) display an interesting 
contrast between two sets of flow conditions (these are tabulated by Castro in his Tables 1 and 2). 
Two flows (designated ‘FlL‘ and ‘FlS’) are both associated with a boundary-layer which can be 
described by a power-law profile (18) with exponent a = 0.19. The square section obstacle for the 
flow ‘FlL‘ is nominally of height 65 mm, and for the flow ‘FlS’, of height 12 mm. The parameters 
required to effect our numerical simulation are tabulated in Table I where the Reynolds number, 
Re, is based on free-stream velocity and block height, H .  
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Table I 

‘F1 L‘ 15,000 0.685 0.19 
‘FIS’ 7500 0.58 0.19 

Using the flow parameters of Table I, we have tried to simulate this flow (excluding, as we have 
explained, the effect of upstream turbulence). Figure 6 illustrates the distribution of simulated C, 
determined for these two cases, and these are compared to Castro’s measurements. The extended 
block geometry is represented by seventy-two body-points. The numerical simulation consists of 
an average over 100 time-steps after flow initialization, each time-step of duration 0.025 scaled 
units. The standard deviation associated with this mean is also indicated in Figure 6. 

In view of the differences between the numerical model and the conditions of Castro’s 
experiment, it is interesting to see the degree of similarity between these pressure distributions. The 
discrepancy between them can also be noted. Particularly at the lee side of the block, our numerical 
simulation does not reproduce the strong rather uniform suction measured by Castro. It may be 
the case that the present numerical model is not adequate to determine this suction, since we have 
confined ourselves to a short-interval average and we do not have a stationary recirculating wake. 
It can also be noted that the suction over the top of the block in the numerical simulation is less 

- 1 0  ‘ I I 

Figure 6. Comparison of computed C, (solid line with standard deviation bars) with the measurements of Castro 
(Reference 4, Figure 6)-m for flow ‘FlS’, and 0 for flow ‘FIL‘ (parameters in Table I) 
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than the measured values: this may be again related to the shortness of the averaging interval, or to 
the absence of vorticity in the incident stream. Lee3 demonstrates that an increase of incident 
turbulence has the effect of raising base surface pressure. This suggests that introducing turbulent 
inlet conditions could increase the suction on the building. 

Castro’s Figure 6 indicates a magnitude of C ,  for ‘FlL‘ on the windward face which is roughly 
twice that for ‘FlS’, and it will be noted that this is similar to the ratio of the Reynolds numbers for 
the two cases. It would be valuable to know how the pressure distribution over an obstacle varies 
with varying Reynolds number. Of course, at  low Reynolds number the viscous term in the Navier- 
Stokes equation has an important influence on the pressure field near a solid boundary; the 
situation at high Reynolds number is less clear. It is a widely held view that C, is not measureably 
dependent on Reynolds number for Re > 5000, and this forms a basis for the application of scale 
model studies to large-scale flow problems. In view of the inviscid character of the error in the 
present simulation, it should be possible to examine any depcndence of C, on Reynolds number. 

To illustrate this, the numerical computations associated with Figure 6 are simply repeated for 
the same Reynolds numbers, however the velocity at block height is now chosen to be the same in 
both cases. A scaled velocity of 0.87 is chosen (corresponding to a velocity of unity at a gradient 
height of 2H for cx = 0.19). The two curves in Figure 7 should reflect solely the difference in Re for 
the two cases. It can be observed that the pressures on the windward face are very similar for the 
two cases; over the top of the block the two pressure distributions differ. The computed C, at the 

1 0  

C P  O 

- 1  0 

0 0 0  

- 1 0  ‘ I I 

Figure 7. Comparison of computed C, for two Reynolds numbers Re = 7500 (upper diagram) and Re = 15,000 (lower 
diagram). The free-stream velocity at block height is 0.87 in both cases 
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windward face suggests that the measured differences in C, between ‘F1L‘ and ‘F1S’ are more 
related to block-height velocity than to Reynolds number. The two curves in Figure 7 represent a 
mean over a short averaging interval (2.5 dimensionless units) and this mean has not yet achieved a 
steady value. Thus the differences between the two curves of Figure 7 cannot be offered as 
conclusive evidence of a dependence of C, on Reynolds number; further numerical experiment 
would be required. In any case Figure 7 does serve to illustrate how numerical experiment might be 
applied to the question and a comparison between Figures 6 and 7 will indicate how an increase in 
the block-height free-stream velocity(norma1ized with respect to the free-stream) can influence the 
simulated pressure averaged over the same scaled time interval. 

Finally we show the application of the method to a structure with a pitched roof. Holmes and 
Best3j have made measurements in a boundary layer wind-tunnel (for a rural profile) over a low- 
rise three-dimensional building form with 10” pitch gable roof with overhanging eaves. The model 
has a ratio of cross-section width to axial length to eaves height of 7 :  14:3. The measurements were 
made over its perimeter in cross-section along a band of pressure panels on the centre-line of the 
model building. The width-to-height aspect ratio is certainly not sufficiently large to exclude three- 
dimensional effects, nevertheless Figure 8 does show that the random vortex method provides a 
centre-line pressure distribution similar to the measured values in Reference 33, Table 1. In view of 
the differences between a two-dimensional and a three-dimensional flow, this similarity may be 
fortuitous. 

1.0 

0- 5 

0 0  

- 0 5  

- 1-0 

! I I ! ! ! ! ! I I 
1 2  3 4 5 6 7 8 9 10 

Figure 8. Comparison of computed C,  (solid line) with the measurements (open circles) of Holmes and Best (Reference 3, 
Table 1) 
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The two-dimensional numerical model associated with Figure 8 consists of a building form with 
10’ roof pitch and a scaled width of 1; width-to-height ratio is 7:3; an inlet profile is of power 
CI = 016; the Reynolds number is lo4 (corresponding to typical wind-tunnel conditions). The 
velocity at eaves-height is 1 dimensionless unit. The pressure coefficient is averaged over 100 time- 
steps each of duration 0.02 dimensionless units. The standard deviation of this computed C ,  is 
indicated by the bars. 

The large pressures measured by Holmes and Best at the panels on the windward face may be 
explained by the substantial roof overhang which we have not modelled in our simulation 
(although it is possible to model such a feature). 

7. CONCLUSIONS 

The random vortex method can be used to study, by means of numerical experiment, the mechanics 
of wind-flow over buildings. The dynamic evolution of flow can be simulated, including the case of 
wind-flow which is impulsively started; high frequency fluctuations in the flow can also be 
modelled. The method does not generate numerical dissipation and hence it can depict the 
influence of Reynolds number on the pattern of flow. Unlike a number of other vortex methods, the 
method of Chorin does not require a priori knowledge of flow separation points. For two- 
dimensional problems, the geometrical shape and disposition of obstacles in the flow is arbitrary; 
the influence on a building of its neighbourhood can be modelled. The form of the free-stream field, 
uf, is also arbitrary; as we have shown, this may be chosen to simulate a power-law boundary layer 
profile. 

It should be possible to simulate specific conditions of incident wind-turbulence by artificially 
introducing point sources of (discrete) vorticity upstream. Alternatively, upstream surface 
roughness can be introduced and the vorticity-creation algorithm itself can be used to generate 
‘turbulence’ in the incident stream. 

Some comparisons have been made with wind-tunnel measurements, but these are preliminary 
and cannot be taken as a benchmarking exercise. More detailed consideration would need to be 
taken of the relationship between experimental and numerical conditions. Furthermore, the effect 
of the wake development would need to be studied numerically. 

A number of obvious improvements to the present implementation can be suggested. The 
geometrical definition of the obstacle can be improved by increasing its number of ‘body-points’: 
this is of particular importance if the modelling of sharp features (such as eaves) is to be 
contemplated. If the evolution of a stable (or at least quasi-stationary) recirculating wake is to be 
studied, then some attempt must be made to introduce a thin plate of body points at the ground 
level downstream from the obstacle. Such a model would be necessary if adequate comparison is to 
be made with data derived from quasi-stationary experimental conditions. Perhaps upstream 
boundary-layer separation should also be modelled in order to determine how this contributes 
to the wind interaction with a building. 

The random vortex method can be easily adapted to study a number of particular structural and 
environmental problems. It is possible to model the effect of small-scale structural elements such as 
eaves. Also the airborne dispersion of effluent and the flow of wind over topographical features can, 
in principle, be modelled. More fundamentally, the method could be used to assist in investigating 
the physical mechanisms of flow separation, vortex shedding and wake formation. Some authors 
(e.g. Reference 2) have formulated a simple theory to relate the shedding and reattachment 
dynamics of flow over a surface-mounted obstacle to the parameters of upstream turbulence. The 
simulations described in the present paper re-enforce the observed fact that non-periodic inlet 
conditions can lead to surface pressure fluctuations, shedding and wake formation solely through 
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the viscous interaction of the flow field with the obstacle. Perhaps it may be appropriate to consider 
more carefully such shedding phenomena primarily as a physical Consequence of the no-slip 
condition. Of course, such an emphasis must not detract from the importance of upstream 
conditions. 

The random vortex method has been extended to thr~e-d imens ions’~ ,~~ in various other 
aerodynamic contexts; for the problem of flow over arbitrarily-shaped surface-mounted obstacles, 
a three-dimensional formulation of the problem would involve a considerable increase in 
geometrical complexity. 

The computer storage requirements for the calculations illustrated in this paper are modest. The 
numerical solution illustrated in Figure 2(a) required 640s cpu and 210 Kbytes ofstorage (on a DEC 
System-10); howcver run time can escalate as more discrete vortices enter the flow in order to 
achieve longer time averages. (For example, a run over the time interval between time-steps 300 
and 380, with between 800 and 900 discrete vortices entered in the flow, requires 3780scpu.) 
Obviously any increase in the resolution of body-definition or in time-resolution, or any attempt to 
model a three-dimensional obstacle, would necessitate increased computer requirements. It is 
interesting to note that the random vortex algorithm lends itself to implementation on a 
distributed array processor (such as the ICL-DAP); such implementation could make accessible 
more ambitious modelling problems than those presented in this paper. 
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